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Abstract. The troublesome multi-center molecular integrals of Slater type orbitals (STO) 

in molecular physics calculations can be evaluated by using the Fourier transform and proper 

coupling of the two center exchange integrals. A numerical integration procedure is then 

readily rendered to the final expression in which the integrand consists of well known special 

functions of arguments containing the geometrical arrangetnent of the nuclear centers and the 

exponents of the atomic orbitals. A practical procedure has been devised for the calculation of 

;1 general multi-centcr molecular integral coupling arbitrary Slater-type orbitals. Symmetry 

relations atid asyinjjtotic conditions are discussed. Explicit expressions of three-center one- 

electron nuclear attraction integrals mid four-center two-electron Coulomb repulsion integrals 

for S'I'O of principal (1ii;itilurii number n=2 are listed. A few numerical results are given for the 

purpose of comparison. 



1. Introduction 

Because the calculation of three and four-center integrals is one of the most complicated 

for numerical calculations. Recently, instead of tackling the STO, which supposedly give a more 

accurate electronic distribution, Filter and Steinborn introduced the so called "B functions" 
0 

problems involved in the qiiantum theory of molecules and solids' , it has been a stumbling block 

to molecular ab initio calculation. The nature of the complications is due to the complicated 

:ingrilar dependence associated with different centers and the presence of square roots of radial 

dependence in describing relations between functions of different distances. In the past, two 

general procedures have been employed. The method of Barnett and Coulson' is based on a one- 

center expansion in which the nrinierical work commonly is very tedious and prone to error. The 

other method is based on the adoption of Gaussian orbitals either via expansion' or 

transformation' . Although the Gaussian type orbitals are computationally convenient, they are 

nevertheless inadequate because of poor radial dependence, e.g., the nonfulfillment of the cusp 

condition as well as the riipid falloff :it long distances. Therefore, numerious Gaussian 

orbitals must be introduced in order to produce an accurate result. In the past, a few 

systematic investigations of niolectilar two center integrals over Slater-type orbitals (STO) led 

to general and explicit, but formal, solutions,' -' which commonly cannot be used efficiently 
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and "A fiinctiotis"p which are closely related to the reduced Bessel functions and Laguerre 

functions, respectively. Linear transforinations exist between the STO and these two types of 

functions. A general expression' I 

integr;il and the multicenter repulsion integral over the "B functions". However, the advantage 

of thcse functions is dubious bot ti because the expression itself is still complicated, involving 

multiple numerical integration, and beciItise additional effort is required to perfomi the 

ti as been given for the three-center nuclear attraction 

sumtiintion to obtain the STO integral values. We have already suggested' * that, by using the 

Fourier transfomi technique and properly coupling a pair of two-center exchange integrals, the 

multicenter molecular integrals can be handled in a straightforward manner. For example, a 

four-center two-electron Coulotnb integral can be cast into a simple triple numerical integration 

with finite domain. As the coniplicated geotnetric;il arrangement is connected vectorially and 

appears i n  the argument of the functions i n  the integrand, a simple numerical procedure can be 

directly applied. I lowever, we recently noted that the polynomials appearing in the integrand 

are related to the modified Ressel functions.' ' 'Therefore, by means of their recurrence 

relations, the final compact expressions are readily obtained. 
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11. Basic integrals and procedure 

A set of exchange integrals which are commonly applied to the atomic collisions of heavy 

particles has the following form 

.(ql .r )(q, . r  )..(q .r )exp(-cr -d r  +ixr  +ib.r ) dr  (1) B R 1, B A B  A B 

where, as before' pI ,p2 ..p and q, (q2 ..q4 are arbitrary constant vectors and, in 
1' 

particular, can be set to u n i t  norrn;iI vectors along the Cartesian axes; a and b are real 

constant vectors. The constants c and d are real and positive. Integers n, and n, 2 1 and 

1, and 4 2 0. The vectors r 

and B respectively. It has Lxcn shown 

r are the radius vectors of the electron measured from nucleus A 
A '  B 

I 4  

that Eq. (1) can be expressed as a simple one- 
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exp( i p. R - hR)du 
where I (a,b,c,d) = . ~ I C  [' -- 

h ' n  . I ,n 3 1  ,n 

2 2 2 2 

h = 11(1-\i)h + bl + IIC + (1-11) d 

p = ua-( 1 -u)b, R = r  -r 
A B  

Also, the following differential operations can be easily established 

V h = V h = u(1-u)(a+b)/h 
a b 

V ((3.R) = t1R , V (p.1~) = -(l-u)R 
8 b 

a(p.R)/ac= 0, 3 ( p. II)/dd=O 

(3) 

(9) 

In  adopting this expression, we suggested' ' that the multi-center molecular integrals of 

SI'O can be constructed froni these two-center cxchange integrals. Although in the final 

expressions riunierical integration still has to be performed, the troublesome multi-center nature 

is connected in a vectorial relation which appears only in the argument of the integrand. Thus, 

after the geometry and the orbitals are given, the integrals can be evaluated in a straight- 

forward manner. The method has becn found to be expedient, and accurate results have been 

obtained. In  this chmrnunication, we note that  the parametric differentiation in Eq. (2) is 

coniniutative and associative. Therefore, i f  the solid harmonic operators arc introduced, in  

relation to Eq.( l ) ,  we can fiirther define another set of two-center exchange integrals such as 



n ,  
A 

r 

I n  Eq.( 

I , - 1  n2 -12- l  
exp(-cr -dr +ia.r +ib.r ) d r  

I3 A B  A B r 

0) n,  , I ,  ,111, and 11, ,I, ,m, are the quantum numbers of the orbitals. In connection 

with Eq. (2), we obtain 

1, +I, * 

1 iP.R ' I 

2rc cd e R IC, (hR)u(I-ii)/h du 
0 

J 

where K is the modified spherical Bessel function. Furthermore, the solid harmonic 
11 

1 6  

gradient operator (V ) introduced can be interpreted as in the Condon-Shortley YI ,  ,111, s 

1 /2 
I 91 X Y 

convention , for example, y = -(3/8z) (a/aa +ia/da ) etc. For practical purposes, the 

differential operations have to be performed under the integral sign in Eq.(11) which is 

straightforward but laborious. However, with the aid of Eq.(4)-Eq.(9) and the recurrence 

relations of K , the procedure can be greatly simplified. The technique of solving the 
n 

multicenter molecular integral by coupling a pair of two-center exchange integrals has already 

been suggested. To illustrate the idea and to demonstrate the simple operations, we write down 

the three-center nuclear attraction integral, denoted as L, and the four-center two-electron 
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Coulomb repulsion integral, denoted as M, coupling sonie STO, the nunlerical solutions of which 

;ire knoivii t o  SC difficirh.. 

I .  * We Write 

Using the identity and referring to Fig. 1, we have 
2 iq.(r -R ) ' 

l/rc = l/2n I e  A AC / q  dq 

Eq.( 12) can be written as 
', , 

n, -1, -1 n1 -1, - 1 * 

2 2 1 2 

B 
where l) = ~ i r ?  -( 1-u)b, h = ii(l-u)Ia+bl +ut +(l-u)s 

A 

After performing the parametric differentiation, the angular parts of q are integrated 

)], and the radial parts of cl 
AB-"AC 

annlytically by utilizing the plane WilVe expansion exp[ iq.(uR 

and 11 are integrated nunicrically. The four-center two-electron Coulonib integral is defined as 

follows: 

' 1 2 '  
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In Eq.( 1 S), for example, the indices n, ,t ,m, are the quantum numbers of the orbital; r, 13 

denotes the radius vector of electron number 1 referred to an atomic nucleus B as origin; 6 

the exponent paranierer of STO etc. 

is B 

We replace l/r, by its Fourier transform 

Notice that expressing r, as R +r, is quite arbitrary and offers no advantage 
AC C-r' A 

over other choices as long as they form a vectorial relation. 
2 2  

M = C  (€, ) C  ( 4 ) C  (5 > C  (ED)/(2X (1 
n, A ti, I3 n, C n, 

By using Eq.(lO), we write Eq.(17) as 
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! n, -1, -1 11, -1, - 1 * 

‘ iP’.H 3 2 

CD RCD K, (h’R )/h’ u’(1-11’) 1 dit’ 2n‘C‘D(o e AB a ’=q ,b ’ =O 

where p and h are as defined before and 

p’= n’a’-( l-ll’)b’, ha = u’( l-u’)la’+b’t +u”* +(l-u’)‘’ (19) C D 

Because the angles are generated via parametric differentiation with respect to the 

constant vectors a, b, a’ and b’, i t  is necessary to invoke the conditions, a = -q, b = 0, a’ = 

q, b’ = 0 at the end of the differential opcrations. Then, the integrand consists of a finite 

sum of angular orbitals in variable (1. ’ By properly coupling the orbitals 
I 1  

and using the 

plane-wave expansion expl iq.(RAC-uR +u’R 
AB CD )], we can integrate analytically the angular part of 

(1. Then the radial parts of q , 11 and u’ integrations calculated numerically in a 

straightforward rnanner, such as by Gaussian quadrature or other numerical means. 

I l l .  Symmetry relations 

, 
By inspection, th&e are simple symmetry relations that can be readily employed; in this way the 

nuinber of independent integral exptcssions derived is reduced to the minimum. I 
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Th ree-cen ter Nuclear A ttrac ion In egrals 

Referring to Fig. 1, suppose we have an expression (see Appendix A ) for the following 

integral. For brevity, we write i= 11, ,I, ,m, , j= n, ,4 , q  etc. 

If  the expression of the following integral is known 

we consider the following integral 

where L’. .denotes the integral for which the nuclear center C has undergone an 
JJ 

inversion operation, i.e., if r =lr - R I, then r = Ir + R I, Furthermore, through the C C C’ C 

iriversion of the electronic coordinate which is equivalent to the operatioii taking r to -r 
A B’ 

r to -r  Eq.(21) becomes 
13 A’ 

* 1 
L: .=(w (5 -r - W.<S ,-r )d r  
J J  j A ’ B r  1 B A C 

wi(6BVrA) dr 
C 

=(-1) 

1, +I2 * 
=(- 1) . (kAe+5B) (22) 

1’1 

The interpretation of Eq(22) is that the value of integral L. can be obtained by 
J,i 

taking the complex conjugate of the value derived by means of the expression of L.’ in which 
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the exponents are properly interchanged with the inverted nuclear coordinate C. Finally, a 

phase factor is multiplied to obtain the integral value. 

Four-center Two-electron Coulomb Kenitlsion Integrals 

Referring to Fig. 2, suppose we have 

and are interested in evaluating another integral of the following form 

* 1 * 

The integral value of J is, in  general, different from that of I. Because 
k71;ilj 1,j;k91' . 

the subscripts 1 and 2 are dummy indices, Eq.(24) can be easily rewritten as  
* I 

In Eq.(25), exchange of the nuclear center is implied, e.g., A to C, C to A etc., 

including the exchange of exponents in  the expression of I. Essentially, the nuclear i,j;k,l. 

center is reordered. 
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Next, consider the following integral 
I * 

Comparing to Eq.(23), we immediately find that 

* 
( A  e-+ B,C+-D,5A+--+5 5 +-+tD) B y  C I = I  

j,i;l,k i ,j;k,l 

IV. Asymptotic Behavior and Nuclear Center Collapse 

With this formulation, more information of the asymptotic behavior of the integral is 

easier to obtain, at least in a qualitative sense. For example, it is obvious that the 

integrand decreases exponentially as R AB and R increase linearly through K . However, if R AB CD n 

and R 

to R 

to a change of R than of R and R 

are kept finite, the integrand decreases in a dampened oscillatory fashion with respect 
CD 

through j . In another words, the integral value varies to a smaller extent with respect 
AC n 

as we would expect. The formula is equally valid if the 
AC AB CD’ 

nuclear centers are collapsed into three, two or one center by simply taking the nuclear 

distance to zero, e.g., RAB= 0, or R 

R ~ ~ = R ~ ~  AC n 

- 0, (three center), or R =R =O (two center), or CD- AB CD 

=R =O (one center), respectively. We notice that K (x) goes to infinity at the origin, 

but of course, this does not necessarily mean that the integral is not finite. However, for n 2 

2, there is a much stronger singular point at the origin; the straightforward procedure by 
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-+ 0 would certainly lend to some numerical problems. Fortunately, by directly taking e.g., 

close inspection, we find that, at a11 times, the tertii R K (hR) ,  iii 2 n+l appears in  the integrand 

Using the series representation 

RAB 
111 

n 
1 8  

of K 
I1 

n+l 1 -1 (n+2)! -2 
(2x) + .....I n u(2x) l! r ( n )  + 2! r( n-I) 

-X 
K ( x ) = e  / x l l +  

1 -k 
n 

= e-'/x C (n+ , k) (2x) 
0 L 

I-( I /  2+n+k) 
where the tlankel's symbol (ti, k)  = - -- - - - - - - - -- - k! r( l/2+ti-k) 

we therefore, obtain 

I11 
I i m R  
R - 4  

K ( h R )  = O  , m > n + l  
11 

( 2n) ! 
2n hn+ 1 

, 111 =n+l  - - 
I1 ! 

Le., for the collapsed center case, Eqs.(29) and (30) can be used in the integrand to avoid any 

numerical difficulties. 

V. Numerical Example 

I n  order to test this method, ;t simple Gaussian quadrature integration scheme has been applied , 

to the derived forriiulas for the two electron tnulticenter integrals for the methane molecule. 
I 

I 

The results are listed i n  Table I along with the well known published results of Shavitt and 

Karplus' , and the resid ts coniputed rising the Barnett-Coulson* method. We used the identical 
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parameters arid the same notation as reponed by Shavitt arid Karplus, which are summarized i n  

‘1’;ltdc 1. 

Table 1. Some multi-center-two electron integrals for methane 

X Y z Orbit71 Symbol Exp. 

C 0.0 0.0 0.0 1 s(C) C 5.700 

1 1, 0.0 0.0 -2.0 2P(C) x,y.z 1 A25 

€1 1 .8856180 0.0 Oh666M7 1 s(Hi) h. 1 .ow 
1 

HY -0.94280XM 1.63299316 0.6666667 

H4 -0.94280904 - I  .632993 16 0.666M67 

Rcsults, according to nuinbcr of quadraturc points 

Tlii s tnct hod S havitt-K,uplus Barnelt-cod son 

lntcgnl 12x 12x 16 20x20~24 12x12~16 20x20~24 

(h, h, ;h, h, ) 0.03068148 0.03008213 0.03068 196 0.03068 187 0.03068247 . 

(11, h, ;h, h, ) 0.03569343 0.03569397 0.03569398 0.03569368 

(11, h, ;h, 11, ) 0.09569741 0.09570521 0.09570384 0.09570556 

(c h, ;hy h, ) 0.01298600 0.01274316 0.01286213 0.01271293 0.01274093 

(X h, ;h, h4 ) -0.00752578 -0.00752560 -0.00752573 -0.00752559 -0.00752559 

(Z h, ;h, h, ) -0.04765937 -0.04766222 -0.04766145 -0.04766277 -0.04766263 
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(c 11, ;c h, ). 

(c 11, ;x 11, ) 

(c h, ;z h, ) 

(x h, ;x 11, 

(x h, ;z h, ) 

(Y h, ;Y h, ) 

(z h, ;x h, ) 

( z  11, ;z 11, ) 

(c c ;Ill 11, ) 

(x c ;h, h, ) 

(z c ;h, h, ) 

(x x ;h, h, ) 

(x ;h, h, ) 

(Y Y ;I11 h, 1 

(z z ;h, h, ) 

(x x ;z 11, ) 

(x z ;x h, ) 

(. z ;z 11, ) 

0.01191481 0.01 121649 

0.0201 7340 0.0198 1324 

0.00602 I42 0.00588692 

0.035570t8 0.0355693 I 

0.001 49034 O.o() 148956 

0.0223 1021 0.022319’75 

-0.07790808 -0.0779 1435 

0.00855243 0.00854007 

O.ICj4702 0.l66S4I79 

0.00236735 0.00237 1 1 8 

-0.00 167397 -0.001 67668 

0. I4 192876 0.14 192778 

-0.00 14355.3 -0.00 143592 

0.1367601 1 0.13675834 

0.14091369 0.14091243 

-0.22143208 -0.22142793 

-0.0 1062253 -0.01 062202 

-0.25SO354 1 -0.25502346 

O.OIl91464 

0.020 I8282 

0.00602480 

0.03556692 

0.00 148892 

0.0223 1903 

-0.0779 1088 

0.008.54768 

0.16864892 

0.002369(M) 

-0.001675 14 

0.14 192799 

-0.001 43598 

0.13675888 

0.1409 1270 

-0.221 42658 

-0.01062207 

-0.25502024 

0.01 121651 

0.01980944 

0.00588562 

0.03556880 

0.00148937 

0.0223 1976 

-0.0779 1394 

0.00854864 

0.16656439 

0.00237002 

-0.00 167586 

0.14192784 

-0.001 43598 

0.13675864 

0.1409 1244 

0.01 980903 

0.00588522 

0.03556858 

0.00148940 

0.0223 1959 

-0.07791452 

0.00854849 

0.00237004 

-0.0016758 1 

0.14 1927 

-0.00143579 

0.136758 

0.1409 12 
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VI. Conclusion 

Using the integral transform technique, we have derived explicit expressions for one- 

elcctron three-center niiclear attraction molecular integrals coupling the n=2 atomic Slater 

orbitals which are listed in Appendix A. Using Eq. (20) and similar expressions given in 

Appendix A, we can write the expressions for two-electron four-center Coulomb repulsion 

integrals, which are considered aniong the tilost difficult molecular integrals to evaluate. It 

is neither necessary nor feasible to list all the expressions; however, we give in Appendix B, a 

representative set. These expressions contain well behaved and well known special functions to 

which numerical procedures can be easily applied. Although the development is parallel to what 

was reported earlier: ’ the recognition of the modified Bessel functions in the integrand and the 

gradient operators introduced allow 11s to write directly the integral expression coupling any 

arbitrary orbitals in  a much more compact fomi. As pointed out earlier, the merit of this 

approach lies in the fact that the complicated geometrical nature of a multi-center integral is 

properly handled by means of the vectorial relations and is manifested in the integrand through 

the argument of special functions in  a natural way. Therefore, it may have better numerical 

behavior than most aforementioned methods. For a small set of molecular integrals, we have 

encoiintered no numerical difficulties ;IS clcarly borne ou t  by our numerical example. However, a 

inore thorough investigation will be conducted in the future. By means of a simple symmetry 

16 



argument, tlie nuiiiber of independent integral expressions cmi be greatly reduced. We also have 

shown the asymptotic behavior of tlie integral with respect to tlie internuclear distance and 

expect no numerical difficulties if provisions are properly taken to treat the collapsed center 

case. With perseverance, other integral expressions involving either higher orbitals or other 

operators can be equally well deduced. Despite the fact that this method cannot be easily 

generalized, i.e., explicit expressions Iiiive to be developed for each particular integral, this 

method, nevertheless, offers indeed a simple and compact solution to this notoriously difficult 

molecular probleni. With ftirther rcfinement and efficient numerical procedures, we believe this 

approach will make a contribution to the field of molecular calculation. We also point out that 

this formulation is quite suitable for a small computer, as was demonstrated in our numerical 

example. A typical run of a set of integrals on a IBM PC AT is of the order of a few minutes. 
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Appendix A 

Three-cen ter nuclear a ttrnc tion integrals 

We list only tlie integrands with the argiinient of the functions omitted wherever possible. 

The full exi)ression should be interpreted i n  tlie following sense, for example: 

We furtlier substitute (1 = tan(v) to use v as an iiitegratioii variable with the l imit  froin 

0 to n/2. I n  the above equation, we hnve 

lXAB=R - R  RAC=R C A  - I t  B A '  (0 = I I R  - IX 
A B  A C '  

2 1 1 1 

B atid h is the positive root of h = u(1-u)q + 115 + (1-u)k 
A 

1 
r 

2 

I , ,  = <IsA - lsI3 > = 5 5 C, (5 )C, ( ~ 1 3 ) ~ ~ ( l - u ) j o  R' K, / h  /n A B  A AB 
C 

1 1 A 1  3 1  2 

I., = <2sA -' 
r IsR > = 5 C, (5 )C, (5 )jo I R 11 (1-11)5  K, / h  - R A B i ~ ( l - i i ) ~ ,  / h  l/n 

13 A 13 A 13 A 
C 
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4 4  2 2 2  1 5 2  3 

2 2 3 2 

(115 + ( I - u ) ~ ,  )u(l-u)+R l l ( ~ - l l ) K 2  / h  ]/K A AB (A3) 
4 2  

1 

2 4 1 
f '  r 

I,, = < 2 p  A - 1sB > =  2 / J ~ 5  5 C2 (5 )C, (5 )u (I-u)R 1-j, K, ( I - u ) q  
A 13 A B AB C 

5 2  3 2 A 4  

q j ,  5, Y, , (o)/h 
1 
r L, = <2p0 A - 2sB > = 2/JxC2 ( t A ) C ,  (5 15 I-R u (1-u) B A A B  C 

2 2 2  A 3 2  4 

5 2 2 A A A 

y, (w)-j0 /4n 1-jl K, R (1 11 ( I - u )  (211-I)YI (R )Y, (0) AB AB 
3 4 2  2 3  

/ h  +3j, K, R I I  (1-11) / h  /4n A B  
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(A9) 

(A 10) 
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Appendix I3 

Four-center two-electron repulsion integrals 

We list only the intepands and suppress the argument of the functions wherever possible. The 

ful l  expression should be interpreted in the following sense, for example: 

1 
MI = < 2 p  A 1sB - 2sC lsD> 

f I rl 2 

4 2 2 3 3  2 

[RCD K: (h’R CD C D  CD D )u’ (1-u’)C 5 /h’ - R C D ~ :  (h’R )u’(l-u’)k /A’ ] du du’dq 

We further substitute q = tan(v) to use v as an integration variable with the limits fron; 0 to 

d 2 .  In the above equation, we have 

= R  - R  R - R  - R  -R 
C I S ~ A B  B A * ~ A C =  c A ’ ~ C D -  D c +u’R A C - ~ ~ A B  o = R  

2 2 2 2 2 2 2 2 

D 
h =u( l -u )q  + u 5  +( l -u )k ,  , X’ =u’(l-u’)cl +u’5 +(1-u>5 

A C 

(2n+1)/2 - c (5>=(25)  J (2n)! 
I1 

2 3  3 2 

l l ( 1 - l l ) K 2  / h  R u’(I-u’)Ki R /h’ 
A B  GI) 



2 2 Y Y  2 

4 2 2 3 3  2 

K; U'  ( I - u ' ) ~  5 /h' -R K; U ' ( I - U ' ) k D / h '  1 lnCD C D  CD 

3 3 2 1 2 

K: u 7  (1-u')k 5 /h' -RCD"; d ( l - u * ) 5  /h* ] ' RCD C D  D 
1 M, = <2sA 2sB - 2sC 2sD>=C2 (5 )C, (5 )C2 (€,&C2 
rl 2 A B 

I 2 2 2 2  4 4  2 

5 2 2 2 2  4 4 1 2 3 3 1 

K, u (I-u)  5 6 / h  -RAR", (ut; +(l-u)S )u(l-u)/h +RABu(I-u)K2 / h  1 l R ~ ~  A B  A B 
4 2 2 3 3  2 
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4 2 2 A ’  4 2  A 2 

4 2 a 3 3  2 

[RCD“; u’ (1-u’)E 5 /h’ -RCDli: u’(l-u’)5 /h’ ] C D  D 
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S 2 2 A A 

5 3  3 4  A 

[q2 1c4 RAB u (1-u) /A j, (3/20n)’ I2 Y2 (a)+ 
J 2 2 A A A A 3 

2 2 3 3  2 

I 2 3  3 4  A 
fK4 RAB q u (1-u) /h  (io /4n+(1/20n)’ j2 Y2 (0)) 

J 2 1 2 2  4 4  2 2 

K: u’ (1-11’) €, 5 /h’ -R K; (11’5 +(l-u’)€,,> 
RCD C D  CD C 

3 3 2 

II’(I-u’)/X’ +R U’(1-U’)Kl /h’ 1 
CD 

4 3 2  2 I 4 3  3 3  
A 

/2 [K; RCD/A’ U’ (1-u’) (-tc4 R / h  11 (1-11) q {(27/28)’ (1/5n) j, Y, (0) AB 
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4 2 2  A 5 4 3  3 2  A 

-K: R / I ’  U’ (l-u’)Yl , (d  CD CD ) (  K, RAB/h. u (1-u) q {j, /4n -j2 Y, , (0) 

5 4 3  3 5 4 3  3 4  A 
/2 

( K i  RCD/l’ 11’ (1-U’) 1 K4 RAn/h u (1 -u) c] { (3/35K)(l/X)’ 

- ( W 4 ~ ) ( 1 / 5 n )  j, Y, (w)+(O/80n )jo } +K, R / h  u (1-u) 

Y, (o)j, 
2 5 ’  3 2 A .  

I 11 2 

AB 

2 5 2 A A 4 3  2 2 

(1 {IC, JtAB/h Y, , (R )Y, ( I <  ) - 3 ~ ,  RAB / h  /4n} 11 ( 1 - 1 1 )  A 13 AI3 
A 

{j, /4n -(1/5x)’ ” j, Y2 (0)) I 
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5 3 2  2 9 4 1  3 A 

- K ;  R /A’ U’ (1-11’) ( K ,  K / h  I1 (I-U) ((2U’-I)Y, (R ){(I/Sn) C D  AB AB 

A 4 3  2 2 A A 

+K: R /h’ U’ (1-LI’) [K4 R /A u (1-11) q (-(l-U’)Yl (ItCD) CD A B  
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2 A 5 3 2  
1 2  

2 

q (j, /4n: +(1/20n:)’ . Y2 , (w)i2 )-K, RAB/h q u (1-11) j, 

5 2 2 2 2  4 4  2 2 

K: U’ (I-U’) 5 5 /h’ -R K: (U’c +(l-U’)CD) ‘RCD C b  CD C 

u’(l-u’)/A’ +RCDu’(1-ii’)~: /h’ 1 

2 3  3 2 2  A 

[ K ;  II’CDL).l (1-u’) /h’ (K, AB / h  q 11 (1-11; (io /4x-j, (1/5n)’ ” Y, , (0)) 

4 ‘  2 2 4 2  b 2  A‘ n 4 3 

-(i, IC, RABu (I-U)/h Y, , (R )Y, ( O ) ) + K i  R’CD/h’ 11’ ( l - ~ ’ ) ( a ,  K3 RAB/h 
AB 
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4 3  3 2  2 3  A 

(-IC; R’ /A’ u’ (1-11’) Iq (1/4~)(18/35)”~ Y3 f2 (o)Y, IC, AB / h  u (1-11; j, 

-; j, K, RAB/h u (1-uy { (6/2On) Y, *, (o)Y, (RAB)(1-u)-u(3/20x)’ 

CD 
A 

1 1 2  * 5 3 2  
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A 

C 

Fig. 1. The coordinate system for one-electron three-center integrals 
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2 
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B 

Fig. 2. The coordinate system for two-electron four-center integrals 
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